Aktuelle Pressemitteilungen

Forschung/Wissenschaft

Thüringer Projekt entwickelt neuartige Technologieplattform zum Nachweis von SARS-CoV-2

Voruntersuchungen am IMMS für die miniaturisierte Messtechnik für die Technologieplattform zum Nachweis von SARS-CoV-2. Foto: IMMS

Änderung der elektrischen Leitfähigkeit macht Virusmaterial sichtbar

Ilmenau/Jena/Bad Langensalza (08.03.2021) Testen, testen, testen - wenn die Corona-Pandemie eines gelehrt hat, dann wie wichtig diagnostische Hilfsmittel sind, die schnell und zuverlässig beispielsweise Erreger oder Antikörper nachweisen können. Der diagnostische Werkzeugkasten muss dabei stetig durch neue innovative Methoden erweitert werden, um sowohl SARS-CoV-2 als auch zukünftigen Herausforderungen dieser Art begegnen zu können. Chemiker der Friedrich-Schiller-Universität Jena, das IMMS Institut für Mikroelektronik- und Mechatronik-Systeme gemeinnützige GmbH (IMMS GmbH) und die fzmb GmbH, Forschungszentrum für Medizintechnik und Biotechnologie entwickeln deshalb gemeinsam eine neue Technologieplattform für Schnelltests. Am Freitag (5.3.) startete das vom Bundeswirtschaftsministerium geförderte Projekt "ViroGraph - Multiplex-Detektionssystem zum Nachweis von Viren auf Basis von Graphen-Feldeffekttransistoren", das für zweieinhalb Jahre angesetzt ist, mit einem virtuellen Auftakttreffen, an dem auch die Mitglieder des begleitenden Ausschusses aus sechs Unternehmen und Institutionen teilnahmen.

Ziel der neuen elektronischen Plattform ist es, die bereits an der Universität Jena erforschten Graphen-Sensoren für neue sogenannte Point-of-Care-Geräte zu erschließen. Solche kleinen und mobilen Geräte sollen künftig ähnlich einfach wie Covid-19-Schnelltests vor Ort einsetzbar sein und Viren, Virenproteine oder Antikörper hochsensitiv - vergleichbar mit PCR-Tests - nachweisen. Mit dem neuen Projekt wollen die Partner den Grundstein für viele weitere präzisere, sensitivere und spezifischere Anwendungen im Bereich der Vor-Ort-Diagnostik über SARS-CoV-2 hinaus legen.

Sensor aus Graphen

Prinzipiell sind auf den Teststreifen der aktuell eingesetzten Schnelltests bestimmte Proteine als Fängermoleküle aufgebracht, die - falls in der untersuchten Probe vorhanden - mit Virusbestandteilen oder mit Antikörpern reagieren. Dabei entsteht ein Farbstreifen, der das Ergebnis anzeigt. In der neuen Plattform des ViroGraph-Projektes soll ein neuartiger elektronischer Sensor aus Graphen die Aufgabe des Teststreifens übernehmen - überzogen von einer nur einen Nanometer dicken Kohlenstoffmembran, die die Fängermoleküle auf der Sensoroberfläche fixiert. Lagern sich die Analyten aus einer Probe - also etwa Antikörper oder Virusbestandteile - auf der Sensoroberfläche an, dann verändert sich die elektrische Leitfähigkeit des Sensors. Dieser Parameter kann elektronisch ausgelesen werden und liefert das Testergebnis.

"Feldeffekttransistoren kommen bereits beispielsweise bei der Messung von pH-Werten zum Einsatz, für Anwendungen im Bereich der immunologischen Diagnostik allerdings waren sie bisher nicht sensitiv und spezifisch genug", erklärt Prof. Dr. Andrey Turchanin von der Universität Jena. "Durch die Kombination von Heterostrukturen aus Graphen, das eine entsprechende Leitfähigkeit bereithält, und der molekularen Kohlenstoffnanomembran, die die Sensoroberfläche biochemisch funktionalisiert, konnte diese Schwachstelle allerdings behoben werden. Denn das aus nur einer Atomschicht bestehende 2D-Material Graphen zeichnet sich durch eine besondere elektrische Leitfähigkeit aus - sensible Änderungen der Leitfähigkeit während der Ankopplung von Analyten, also den gesuchten Molekülen, lassen sich schnell und einfach messen."

Kleine Geräte und viele Parameter per Schnelltest

Um diese kleinsten elektrischen Ströme im Bereich einiger Nanoampere überhaupt messen zu können, entwickeln die Projektkoordinatoren des IMMS geeignete miniaturisierte Messtechnik. "Das ist wichtig, um die für unsere Anwendung notwendige Leistungsfähigkeit sehr großer Messgeräte, die solche Parameter normalerweise ermitteln können, in ein handliches Point-of-Care-Gerät zu integrieren." sagt Michael Meister vom IMMS. "Eine besondere Herausforderung dabei ist außerdem, mehrere Graphen-Sensoren gleichzeitig zu messen, um eine Multiparameteranalytik realisieren zu können."

Denn hierin soll die besondere Stärke der elektronischen Methode bestehen: "Wir wollen den Grundstein für ein Multiplex-Detektionssystem legen, mit dem wir mehrere Analyten gleichzeitig detektieren können", erklärt Dominik Gary von der fzmb GmbH, deren Mitarbeiterinnen und Mitarbeiter immunologische und molekularbiologische Nachweissysteme für den neuen Sensor entwickeln. "Somit wäre das ViroGraph-System möglicherweise sogar zur Gentypisierung geeignet und könnte deshalb verschiedene Mutationen von Viren im Schnellverfahren erkennen."

Einschätzung aus der Industrie

"Für uns als Experten für Immunoassays und ELISA sind Ergebnissicherheit, einfache und schnelle Testverfahren zentral", erklärte Dr. Peter Rauch, Mitglied im ViroGraph-Projektausschuss und Geschäftsführer der CANDOR Bioscience GmbH. Die Pandemie des SARS-CoV-2-Virus zeige deutlich den Bedarf an Point-of-Care-Systemen mit hoher analytischer Leistungsfähigkeit, die vor Ort am Patienten zu vertretbaren Preisen eingesetzt werden können. "Die im Projekt verfolgten Ansätze können den Herausforderungen auf elektronischem Weg begegnen. Wir werden daher die Arbeiten mit großem Interesse verfolgen und mit Rat und Tat unterstützen."


Projektbegleitender Ausschuss:
- CANDOR Bioscience GmbH
- CNM Technologies GmbH
- GeSiM mbH
- Institut für Bioprozess- und Analysenmesstechnik e.V.
- sifin diagnostics GmbH
- TissUse GmbH

Förderung:
Gefördert durch das Bundesministerium für Wirtschaft und Energie aufgrund eines Beschlusses des Deutschen Bundestages unter der IGF-Vorhaben-Nr.: 21363 BR/1.

Bildmaterial:

Bild 1: https://www.imms.de/fileadmin/redaktion/presse/pressebilder/2021/20210303_ViroGraph_MR_Prober_IMG_4365_15x10cm_300dpi_QuelleIMMS.jpg
Voruntersuchungen am IMMS für die Entwicklung einer miniaturisierten Messtechnik für kleinste Ströme, die für die in ViroGraph angestrebte neuartige Technologieplattform zum Nachweis von SARS-CoV-2 notwendig ist. Foto: IMMS.

Bild 2: https://www.imms.de/fileadmin/redaktion/presse/pressebilder/2021/20210303_ViroGraph_Sensor-mit-Graphen-FETs-auf-Wafer-Prober_IMG_4488_15x10cm300dpi_QuelleIMMS.jpg
Sensor der FSU Jena mit 15 Graphen-FETs bei Voruntersuchungen am IMMS. Das IMMS entwickelt die miniaturisierte Messtechnik für kleinste Ströme, die für die in ViroGraph angestrebte neuartige Technologieplattform zum Nachweis von SARS-CoV-2 notwendig ist. Foto: IMMS.

Bild 3: https://www.imms.de/fileadmin/redaktion/presse/pressebilder/2021/Sensor-mit-15Graphen-FETs-auf-Leiterplatte_15x10cm-300dpi_Quelle-DavidKaiser-FSU-Jena.jpg
Ein Sensor mit 15 Graphen-FETs auf einer Leiterplatte. Foto: David Kaiser, FSU Jena.


Über das IMMS Institut für Mikroelektronik- und Mechatronik-Systeme gemeinnützige GmbH (IMMS GmbH)

Das IMMS stärkt vor allem KMU mit anwendungsorientierter Forschung und Entwicklung in der Mikroelektronik, Systemtechnik und Mechatronik und transferiert Ergebnisse der Grundlagenforschung in Anwendungen. Als strategischer Partner unterstützt das IMMS Unternehmen, international erfolgreiche Innovationen für Gesundheit, Umwelt und Industrie auf den Weg zu bringen und begleitet sie von der Machbarkeitsstudie bis zur Serienreife. Unter dem Leitgedanken "Wir verbinden die digitale mit der analogen Welt" bündelt das IMMS seine Kompetenzen in Sensor- und Aktorsystemen, Signalverarbeitungs-, Steuerungs- und Regelungssystemen sowie in der Systemintegration und Kommunikation. In dem 1995 gegründeten Forschungsinstitut des Freistaats Thüringen sowie An-Institut der TU Ilmenau arbeiten derzeit rund 80 Personen in Ilmenau und Erfurt.
www.imms.de
ViroGraph auf www.imms.de: https://www.imms.de/wirtschaft/projekte/projekte-im-bereich-medizintechnik-und-life-science/virograph-4222.html


Über die Arbeitsgruppe Turchanin des Instituts für Physikalische Chemie der Friedrich-Schiller-Universität Jena

Die Forschungsaktivitäten der AG Turchanin umfassen die Herstellung, Charakterisierung und funktionelle Anwendung von zweidimensionalen (2D) Materialien. Der materialwissenschaftliche Schwerpunkt liegt auf kohlenstoffbasierten Materialien wie Graphen und molekularen Kohlenstoff-Nanomembranen, sowie ihren Hybriden mit anorganischen Nanomaterialien. Ein wesentlicher Aspekt ist die Optimierung der Materialsynthese im Hinblick auf ihre potentiellen Anwendungen. Im Vordergrund stehen die Charakterisierung der chemischen, strukturellen, elektronischen, optoelektronischen und elektrokatalytischen Eigenschaften. Basierend auf diesen komplementären Untersuchungen entwickelt die AG Turchanin neuartige Anwendungen von 2D Materialien und deren Hybriden in Bauteilen für Sensorik, Nanoelektronik, Photonik und Energieanwendungen.
www.apc.uni-jena.de


Über die fzmb GmbH, Forschungszentrum für Medizintechnik und Biotechnologie

Die fzmb GmbH ist ein privatwirtschaftliches, gemeinnützig organisiertes Unternehmen. Aufgrund des breiten Technologieportfolios ist die fzmb GmbH in der Lage, komplexe Entwicklungsprojekte unter Einbeziehung vorhandener medizinischer, biologischer, chemischer und ingenieurwissenschaftlicher Expertise von der Idee bis zur Marktreife umzusetzen. Durch die flexible Vernetzung der interdisziplinären Kompetenzen werden die Forschungsbereiche Veterinärmedizin, Lebensmitteluntersuchung, Geräteentwicklung und Diagnostik auch komplexen Projektanforderungen für Forschungs- und Entwicklungsprojekte mit der Industrie gerecht. Gegründet 1994 von Biotechnologen, Ingenieuren und Medizinern, entwickelt und produziert das ISO-zertifizierte Unternehmen heute innovative, qualitativ hochwertige Diagnostikprodukte für Labor und Point-of-Care-Anwendungen.
www.fzmb.de

 

Bereich Forschung Institut Universität

Disclaimer: Diese Pressemitteilung wird für den darin namentlich genannten Verantwortlichen gespeichert. Sie gibt seine Meinung und Tatsachenbehauptungen und nicht unbedingt die des Diensteanbieters wieder. Der Anbieter distanziert sich daher ausdrücklich von den fremden Inhalten und macht sich diese nicht zu eigen.